加入我们
首页
{{ reversedMessage() }}
当前选择:北京
关于我们 提交需求 加入平台
关注我们
二维介孔聚吡咯-氧化石墨烯异质结材料构建出无枝晶锂金属负极
来源:X-Mol
2020-05-15
阅读2037

随着不断增长的全球化石能源危机,高能量密度的电池的开发对于便携式电子设备和电动汽车非常重要。锂离子电池的能量密度正在接近理论极限。锂金属电池由于理论比容量高和电化学电位低,被认为是下一代的高能量密度的电池。然而,锂金属电池的短循环寿命、低效率和安全问题严重阻碍了锂金属电池的广泛应用。为了应对这一挑战,中国科学院大连化学物理研究所吴忠帅点击查看介绍等人提出了一种二维(2D)异质结构材料,作为双功能的锂离子再分配器,显著提升了锂金属负极的性能

抑制锂枝晶的策略包括设计三维的高比表面积的集流体、采用亲锂合金作为锂金属成核位点、设计功能性电解质添加剂来加强SEI膜或者设计高模量的固体电解质来减少负极与电解质之间的反应。然而,这些策略仍存在一些问题,例如,锂枝晶的不均匀生长在三维载体的内部空间里很难被完全阻止,锂金属合金合成复杂、锂含量低,SEI稳定的电解质添加剂容易消耗,而固体电解质的离子电导率低和极化电压高,这些问题极大地限制了锂金属电池的发展。为了获得高性能锂金属负极,许多研究者设计了纳米多孔结构,有效实现了无锂枝晶的锂金属负极。尽管取得了巨大的进展,但合理构筑有效的纳米多孔结构来调控高电流密度条件下锂离子沉积的均匀性并保持长循环寿命,依然是一项挑战。

最近,该研究团队采用硬模板策略,合成了均匀生长在有缺陷的氧化石墨烯(GO)的介孔聚吡咯(mPPy)的二维异质结构(mPPy-GO),并用它作为双功能的锂离子再分配器,实现锂离子的均匀沉积,从而获得很稳定的无枝晶锂金属负极。他们利用mPPy的连续的锂离子传输纳米通道和GO纳米片的锂离子纳米筛的协同效应,得到了均匀的锂离子通量。结果表明,mPPy-GO异质结构电极表现出优异的电化学性能,包括电流密度为10.0 mA cm-2的条件下稳定的库伦效率(98%)和平坦的电压曲线(70 mV)、超长的循环稳定性。最终,mPPy-GO-Li//LiCoO2全电池运行450个循环后,容量保留率为90%,库伦效率接近100%。这项工作为构建高能量密度锂金属电池的二维异质结构提供了新的见解。


这一成果近期发表在Angew. Chem. Int. Ed. 上,文章的第一作者是中科院大连化物所博士研究生石浩东秦洁琼同学。

原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):

Two‐Dimensional Mesoporous Polypyrrole‐Graphene Oxide Heterostructure as Dual‐Functional Ion Redistributor for Dendrite‐free Lithium Metal Anodes

Haodong Shi, Jieqiong Qin, Kai Huang, Pengfei Lu, Chuanfang John Zhang, Yanfeng Dong, Mao Ye, Zhongmin Liu, Zhong-Shuai Wu*

Angew. Chem. Int. Ed., 2020, DOI: 10.1002/anie.202004284

吴忠帅研究员简介


吴忠帅,中国科学院大连化学物理研究所首席研究员,二维材料与能源器件研究组组长(PI),博士生导师,英国皇家化学会会士,中组部引进海外高层次人才特聘专家(2015)。长期从事二维能源材料与高效电化学能源创新系统的应用基础研究,包括柔性/微型储能器件,金属/固态电池、超级电容器。已在Energy Environ. Sci.、Adv. Mater.、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Energy Mater.、ACS Nano等期刊发展学术论文130余篇,影响因子大于10的论文70余篇,被SCI引用20000余次,获2018年和2019年“科睿唯安”全球高被引科学家,国家自然科学二等奖(2017,第四完成人),辽宁省自然科学奖一等奖(2015,第四完成人)、中科院百人计划终期评估优秀,辽宁省“百千万人才工程”-百人层次、辽宁省“兴辽英才计划”青年拔尖人才、大连市重点领域创新团队支持计划项目学术带头人等奖项或荣誉。担任Applied Surface Science编辑、Journal of Energy Chemistry执行编辑、Energy Storage Materials国际编委和客座编辑、Advanced Materials客座编辑等学术任职。


https://www.x-mol.com/university/faculty/26723

团队在该领域近期工作汇总:

1.2D Amorphous V2O5/Graphene Heterostructures for High-Safe Aqueous Zn-Ion Batteries with Unprecedented Capacity and Ultrahigh Rate Capability, X. Wang, Y.G. Li, S. Wang, F. Zhou, P. Das, C.L. Sun, S.H. Zheng, Z-S Wu*,Advanced Energy Materials, 2020, DOI: 10.1002/aenm.202000081.

2.Ionogel-based Sodium Ion Micro-batteries with a 3D Na-Ion Diffusion Mechanism Enable Ultrahigh Rate Capability, S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou, J. Qin, C. Sun, Y. Yu*, Z. Wu*, X. Bao, Energy & Environmental Science, 2020, 13, 821-829.

3.Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility,Y. Yao, Z. Wei, H. Wang, H. Huang, Y. Jiang, X. Wu, X. Yao*, Z.-S. Wu* and Y. Yu*, Advanced Energy Materials, 2020, 1903698.

4.Scalable Fabrication of Printed Zn//MnO2 Planar Micro-Batteries with High Volumetric Energy Density and Exceptional Safety, X. Wang, S. Zheng, F. Zhou, J. Qin, X. Shi, S. Wang, C. L. Sun, X. Bao, Z.-S. Wu*, National Science Review, 2020, 7, 64-72.

5.Hierarchical Ordered Dual-Mesoporous Polypyrrole/Graphene Nanosheets as Bi-Functional Active Materials for High-Performance Planar Integrated System of Micro-Supercapacitor and Gas Sensor. J.Q. Qin, J.M. Gao, X.Y. Shi, J.Y. Chang, Y.F. Dong, S.H. Zheng, X. Wang, L. Feng,* Z-S Wu*, Advanced Functional Materials, 2020, 1909756.

6.Conducting and Lithiophilic MXene/Graphene Frameworks for High-Capacity, Dendrite-Free Lithium-Metal Anodes, H.D. Shi, C.F. J. Zhang, P.F. Lu, Y.F. Dong, P.C. Wen, Z.-S. Wu,* ACS Nano, 2019, 13, 12, 14308-14318.

7.Free-Standing Integrated Cathode Derived from 3D Graphene/Carbon Nanotube Aerogels Serving as Binder-Free Sulfur Host and Interlayer for Ultrahigh Volumetric-Energy-Density Lithium-Sulfur Batteries H.D. Shi, X.J. Zhao, Z.-S. Wu*, Y.F. Dong, P.F. Lu, J. Chen, W.C. Ren, H.-M. Cheng, X.H. Bao, Nano Energy, 2019, 60, 743-751.

8.The Promise and Challenge of Phosphorus-based Composites as Anode Materials for Potassium-ion Batteries, Wu, H. B. Huang, Z.-S. Wu*, Y. Yu*, Advanced Materials, 2019, 31, 1901414.

9.A General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Two Dimensional Polymers with Cylindrical Mesopores on Graphene, H. Tian, J.Q. Qin, D. Hou, Q. Li, C. Li, Z.-S. Wu*, Y.Y. Mai*, Angewandte Chemie International Edition, 2019, 58, 10173-10178.

10.All-MXene-Based Integrated Electrode Constructed by Ti3C2Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries, Y.F. Dong, S.H. Zheng, J.Q. Qin, X.J. Zhao, H.D. Shi, X.H. Wang,* J. Chen, Z.-S. Wu*, ACS Nano, 2018, 12, 2381.


  • 实验外包
  • 方案定制
  • 仪器预约
  • 技术研发
科研共享方便简单
米格实验室
地址:北京市海淀区丰豪东路9号院中关村集成电路设计园展示中心二楼米格实验室
扫一扫二维码关注
发表评论
相关评论
推荐文章
热烈祝贺第一期中国医工结合创新发展论坛圆满举办!
2022-06-11
3713
AFM检测技术原理
2021-09-02
6860
1000个SEM测试名额免费送!
2021-08-31
5484